

機能性マスターバッチ キノフ°ラス®

機能性材料紹介

機能性マスターバッチ"キノプラス®"

以下機能剤の他、難燃剤や防曇剤のマスターバッチなど、各種開発検討中でございます。これらラインナップの他、お客様のご要望に応じて、個別にマスターバッチ、コンパウンドの設計も対応します。

> 安定化

- 酸化防止剤(熱安定剤)
- 耐候剤・耐光安定剤
- 黄変防止剤

> 加工性能の向上

メヤニ防止剤

> 表面性質の向上

- アンチブロッキング剤(AB剤)
- 滑剤

> 電気性能改善

- 帯電防止剤
- 導電材

> 物性向上

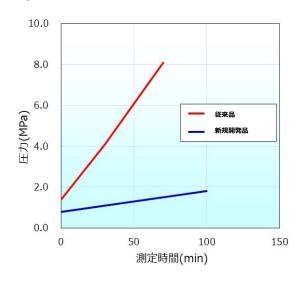
- 造核剤
- GF・CFコンパウンド

> その他

パージ剤

アンチブロッキング剤マスターバッチ

アンチブロッキング剤を分散させたマスターバッチで、フィルムやシート同士が密着し、互着することを防止します。アンチブロッキング剤はシリカ、ゼオライト、ポリマービーズなど、目的の物性に応じた最適な処方を提案致します。

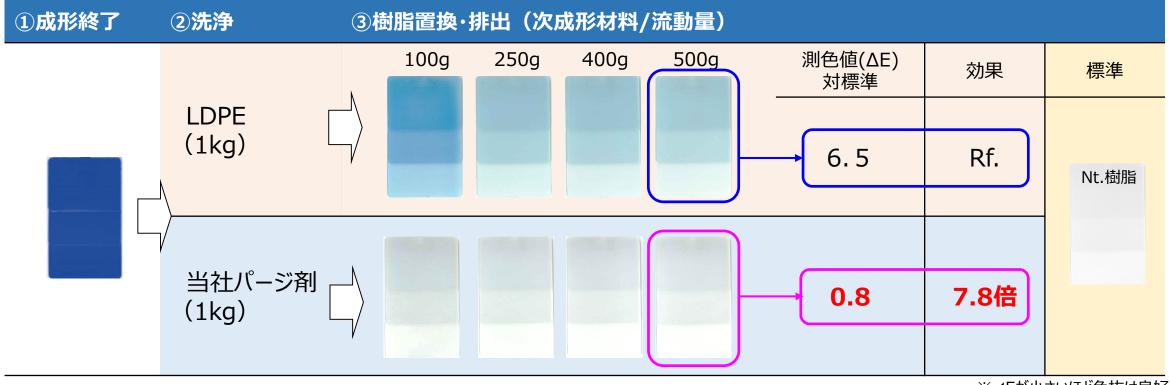

ラインナップ例)

樹脂種	AB剤種	AB剤濃度 (%)	粒径 (µm)	特徴
LDPE	ゼオライト	20	5	薄膜用 高透明性
LLDPE	ゼオライト	20	7~8	高温適用 低フレーバー性
PP	シリカ	5	4	汎用
PP	ポリマービーズ	10	4	薄膜用 耐傷つき性
【新規開発品】 HomoPET(※)	シリカ	5	3	薄膜用 高透明性
【従来品】 HomoPET	シリカ	5	3	薄膜用 高透明性
Co_PET	シリカ	5	8	シート用
PA6	シリカ	8	3	薄膜用

(※)製膜ラインのスクリーン交換までの

時間を延長でき、フィルム欠点や延伸時の破断を抑えることが期待できます。

20µm焼結フィルターでのスクリーン圧力試験


高分散・高透明性が求められる延伸フィルム用途でも実績がございます。 オレフィン系、ポリエステル系、エンプラ系などスーパーエンプラ含めて様々な樹脂でのマスターバッチの提供が可能です。

キノプラス®パージ

押出機、成形機用洗浄剤として、洗浄力、自己排出性に優れたパージ剤をご提供いたします。

マスターバッチ樹脂種	推奨使用温度	用途	適用樹脂
ポリオレフィン	200∼300°C	色替え、異物除去	ポリオレフィン系樹脂全般

ご使用方法 例)

※⊿Eが小さいほど色抜け良好

当社品は、色抜け性が良好なパージ剤です。ご不明な点はお気軽にお問い合わせください

メヤニ防止剤マスターバッチ

インフレーション・Tダイ等の押出成形時に発生するメヤニを防止し、ロングラン作業性を向上させるマスターバッチです。当社のメヤニ防止剤マスターバッチは、押出機内やダイリップなどの滞留の発生を低減し、異物削減や外観不良の改善といった品質向上にも寄与致します。

ラインナップ例)

マスターバッチ 樹脂種	有効成分	特徴
PE	フッ素系	使用上限温度 270°C インフレ/Tダイ/その他押出成形
PE	無機系	使用上限温度 260℃ インフレ/Tダイ

効果の確認)

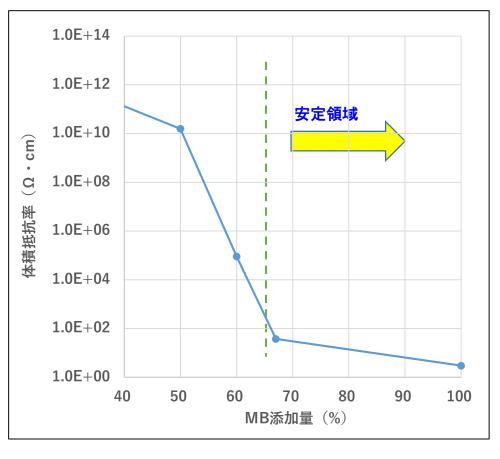
※温度条件170℃/流動開始4時間後

無添加

当社品(フッ素系) 1%添加

導電マスターバッチ/コンパウンド

プラスチックに導電性カーボンを高濃度に分散させた材料です。 電気電子部品等の包装材料や、IC等の半導体の保護材料等に実績がございます。


導電材種類/用途例)

体積抵抗率(Ω c m)		用途例
1012以上	絶縁性材料	PE、PP成形品
1 0 $^{7}\sim$ 1 0 10	半導電性材料	静電記録紙,印刷材料
1 0 3 \sim 1 0 7	帯電性材料	静電気除去(防塵) I C運搬 (プラ段、I Cトレー)
10° \sim 10^{3}	導電性材料	プラスチック電極

<u>ラインナップ)</u>

	成形方法	製品樹脂種	特徴
マスターバッチ	押出成形	PP	高分散、高剛性、カーボン高濃度 他樹脂に希釈して使用可能
コンパウンド	押出成形	LDPE	高分散
コンパウンド	射出成形	PP	高流動性、高耐衝撃性

導電性)

高品質、低コストの製品をご提供いたします。